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Boussinesq-type nonlinear equations for waves propagating over a sloping bottom 
are shown to accurately model the evolving bispectra of a spectrum of non-breaking 
shoaling ocean-surface gravity waves. The model response to a variation of the gentle, 
constant beach slope and the amount of nonlinear (i.e. non-random) phase coupling 
in the initial conditions is also examined. Variation of these quantities results in 
relatively little change in the overall structural evolution of the bicoherence and 
biphase (related to the nonlinear modification of the wave shape). The apparent 
unimportance of bottom slope motivates copsideration of constant-depth KdV 
equations. Simple analytic solutions are found for harmonic growth in the special case 
of a monochromatic primary wavetrain. The associated bispectral evolution is 
qualitatively similar to field observations and to predictions based on the full 
Boussinesq model for a sloping bottom. 

1. Introduction 
As ocean-surface gravity waves shoal the wave field can undergo substantial 

nonlinear evolution from its deep-water state. This nonlinear evolution can result in 
the development of secondary peaks at harmonics of the power-spectral peak 
frequency, and in phase speeds substantially different from those predicted by the 
linear dispersion relationship. Higher-order spectral quantities (i.e. bispectra) also 
evolve as the wave field shoals (Elgar & Guza 1985b). Bicoherence levels increase, 
indicating significant nonlinear coupling between Fourier modes. Biphases and 
sea-surface-elevation skewness and asymmetry (with respect to a vertical axis) evolve 
in a manner consistent with the change in wave shape from a nearly sinusoidal profile 
in deep (9 m depth) water to the pitched-forward profile observed just before wave 
breaking. 

Linear finite-depth theory does not predict the transformation of many of the 
statistics of a shoaling wave field. A model based upon the nonlinear Boussinesq 
equations for a sloping bottom (Peregrine 1967) has been shown to be generally 
superior to linear finite-depth theory for the prediction of frequency-band energy and 
phase, and other low-order statistics of the wave field (Freilich & Guza 1984; Elgar 
& Guza 1985~) .  In the present study, the nonlinear model is shown to predict 
accurately the observed evolution of bispectral quantities. 

Basic bispectral definitions and the bispectral evolution observed on a sloping 
beach are briefly summarized in $2. The nonlinear Boussinesq model equations are 
discussed in $3. Comparisons between model predictions and field data are made in 
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FIGURE 1. Power spectra and contours of bicoherence for the narrow-band 2 February data. The 
power spectra (bars indicate 95 yo confidence levels) are immediately above the corresponding 
bicoherence plots. Wave triads involve frequencies fl,  fi, and fl+fi. The minimum value of 
bicoherence plotted is b = 0.1, with contours every 0.05. There are 250 degrees of freedom, and the 
95% significance level for zero bicoherence is b = 0.15 (see Elgar & Guza 1985b for discussion of 
bicoherence significance levels). The significant wave height H ,  (defined as 4 times the sea-surface 
standard deviation) is 65 em in 4 m depth. (a) depth = 2.7 m; (b) 2.0 m. 
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FIGURE 2. Biphase verms depth for selected frequency pairs for the 2 February data set. The 
symbols represent different wave triads; the two lower interacting frequencies are given, with the 
third frequency equal to their sum. *, (f,f); 0, cf, 2f); +, (f, 3f); +, ( 2 f , 2 f ) ;  x, (3f, 3f), where 
f = 0.06 Hz corresponds to the power-spectral (figure 1 )  peak frequency. 

$3.1, and the results of model simulations with zero beach slope and with different 
phase coupling in the initial conditions are presented in $$3.2 and 3.3 respectively. 
In view of the apparent unimportance of beach slope to overall bispectral evolution, 
equations for a constant-depth fluid are considered in $4. Analytic solutions for the 
particularly simple case of harmonic growth due to a single narrow-banded primary 
wavetrain are shown to qualitatively agree with the bispectral evolution observed 
in field data and predicted by the full Boussinesq model. 

2. Definitions and field observations 
The field observations were obtained in 1980, at Santa Barbara, California. The 

data considered here are from an array of near-bottom-mounted pressure sensors 
deployed along a cross-shore transect between 1 and 9 m depth, beach slope = 0.05. 
The sample rate was 2 Hz, and the data sets are several hours long. Descriptions of 
the sensors, instrument positioning, and data reduction are given in Elgar & Guza 
(1985a, b) and references therein. 

For a discretely sampled process the (complex) bispectrum is defined as (Haubrich 
1965; Kim & Powers 1979) 

(2.1) 

where o is the radian frequency, A is a complex Fourier coefficient and E[ 3 is the 
expected value, or average, operator. The normalized magnitude and phase of the 

mo,, wz) = E[A,] -4,pA:l+0*1, 
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FIQURE 3. Skewness and -asymmetry versus depth for the 2 February data: 0 ,  skewness; *, 
-asymmetry. The data have been band-pass filtered between 0.04 and 0.4 Hz. 

bispectrum are the bicoherence and biphase, given respectively by (Kim & Powers 
1979) 

For a narrow-band spectrum of waves, the bicoherence of wave triads involving 
the power-spectral peak frequency and its harmonics increases as the wave field shoals 
from 9 to 1 m depth (Elgar & Guza 1985b, hereinafter referred to as EG), indicating 
increasing phase coupling between these frequency bands. Bicoherences observed in 
2.7 and 2.0 m depth are shown in figure 1. Figure 2 shows that the biphase between 
the power-spectral peak and its harmonics evolves from a value close to  zero 
(consistent with Stokea-type nonlinear interactions, Hasselman, Munk & MacDonald 
1963) in 9 m depth to  about /3 = -in (the biphase of a sawtooth (EG)) in very shallow 
water (approximately 1 m in depth), an evolution distance of about 300 m. The 
biphase evolution is associated with the evolution of sea-surface-elevation skewness 
and asymmetry (with respect to a vertical axis), which are normalized sums of the 
real and imaginary parts of the bispectrum respectively (Hasselman et al. 1963; EG). 
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FIQVRE 4. Power spectrum (above) and contours of bicoherence (below) for the broad-band 
15 February data measured in 1.6 m depth. Format is the same as figure 1. There are 160 degrees 
of freedom, and the 95% significance level for zero bicoherence is b = 0.19. H ,  in 4 m depth is 
65 cm. 

As shown in figure 3, the skewness is relatively low (but statistically different from 
zero) in 9 m depth, increases to a maximum in about 2 m depth, and then decreases 
to near zero in even shallower water where wave breaking is important. The 
asymmetry has a near-zero value in 9 m depth, and increases (in absolute value, 
asymmetry is negative for shoaling waves in the coordinate frame used here) nearly 
monotonically as the waves shoal. 

Wave fields with broad-band power spectra in shallow water have moderate, but 
statistically significant, bicoherence levels over a wide range of frequency pairs 
(figure 4), indicating nonlinear coupling between many Fourier modes. The evolution 
of biphase, skewness and asymmetry in a broad-band wave field is remarkably 
similar to that observed in a narrow-band spectrum (EG and figure 8). 

Bispectral calculations provide evidence for the excitation of Fourier modes by 
difference interactions as well as sum interactions in a wave field with a double-peaked 
power spectrum (figures 11 and 12 in EG). Unlike sum interactions (figure 2), biphases 
for triads involved in difference interactions evolve from /3 = 180" in deep water to 
lower values as the wave field shoals (figure 12 in EG). 

3. Boussinesq nonlinear model 
Starting with the Boussinesq equations for waves travelling over a sloping bottom 

(Peregrine 1967), Freilich & Guza (1984) develop equations which describe the 
evolution of a wave field's Fourier components. Schematically, the differential 
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Set Model depth Amplitudes Phases 

so Field data 
s1 variable 4 m  measured 
52 variable 4 m  random 
s3 2.5 m 9 m  measured 
54 2.5 m 9 m  random 
s5 2.5 m 4 m  measured 

TABLE 1.  Model parameters. The amplitude column gives the depths at which the field data, used 
in the initial conditions, were collected. The phase column indicates whether if the measured initial 
power spectrum was coupled with measured Fourier phases or with random phases for the 
corresponding model set. The variable-depth cases had a beach slope = 0.05. 

where the overdot indicates differentiation with respect to the offshore coordinate 
x, and the coupling and shoaling coefficients (R,  and S,) are functions of the radian 
frequency o and the depth h [given in Freilich & Guza (1984), equations (21)-(24)]. 
The bottom slope appears explicitly only in the shoaling coefficient S,. Equation (3.1) 
has linear wavenumber at  mode n of k, = (w, / (gh)i)  (1  +hwk/ (6g) ) .  This dispersion 
equation is better behaved at high frequencies where formally equivalent (at this 
order) forms yield imaginary wavenumbers. The model [(3.l)j assumes that the waves 
are normally incident to a beach with plane-parallel contours, and that no energy 
is reflected or dissipated. Model predictions of the spatial evolution of spectra and 
cross-spectra are in good agreement with two different sets of observations (Freilich 
& Guza 1984; Elgar & Guza 1 9 8 5 ~ ) .  

3.1. Model-data comparisons 
The model-data comparisons are statistical. For each 512 s record of data, Fourier 
amplitudes and phases measured at the 4 m depth pressure sensor were used as initial 
conditions (this is model set number I ,  hereafter denoted S1, in table 1 ; the field data 
are denoted SO) for the numerical integration of (3.1). The model spectra have 205 
frequency bands evenly distributed between 0.00 and 0.4 Hz, and require integration 
of 410 first-order nonlinear differential equations for each 512 s initial condition. The 
numerical integrations yield predicted Fourier amplitudes and phases at shoreward 
locations. Many 512 s pieces were integrated, and the Fourier coefficients used to 
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FIGURE 5. Power spectra and contours of bicoherence predicted by the spectral nonlinear model 
((3.1)) for the 2 February data. See figure 1 for explanation of symbols. (a) 2.7 m depth; ( b )  2.0 m. 
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FIGURE 6. Biphase versus depth for selected frequency pairs for the 2 February spectral 
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FIGURE 7. Power spectrum and contours of bicoherence predicted by the spectral nonlinear 
model ((3.1)) for the 15 February data for h = 1.6 m. See figure 4 for explanation of symbols. 
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FIQURE 8. Sea-surface elevation skewness and -asymmetry versu9 depth from field data and as 
predicted by the nonlinear model. The records have been band-pass filtered between 0.04 and 0.3 Hz. 
*, -asymmetry of data; 0, skewness of data. Predicted values are : dashed line, -asymmetry; solid 
line, skewness. The data sets are described in detail in Elgar & Guza (1985a, table 1) .  Briefly, they 
are (a) 30 January, broad-band spectrum, H, = 33 cm; (b) 2 February, narrow-band, H ,  = 65 cm; 
(c) 3 February, narrow-band, H ,  = 93 cm; (d )  4 February, narrow-band, H, = 88 cm; (e) 
12 February, double peaked, H, = 52 cm; (f) 15 February, broad-band, H, = 65 cm. 
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calculate bispectra (from (2.1)) with the same number of degrees of freedom as the 
bispectra of the observations. 

The nonlinear-model predictions of bispectra agree quite well with the observations. 
For example, figure 5 displays the nonlinear-model predictions of bicoherence for the 
narrow-band data set, which are seen to be structurally similar to the observations 
(figure 1). Nonlinear-model predictions and observations of biphases for selected 
frequency pairs as a function of depth for the narrow-band data are shown in 
figure 6. The predicted biphase (not shown) and bicoherence (figure 7) for a broad- 
band data set also match the field data (figure 4) quite well. Model predictions of 
bicoherence and biphase for double-peaked power spectra (not shown) are similar to 
observations (EG, figures 11 and 12), including the sea-swell difference interactions 
discussed in EG. 

Predicted and observed values of sea-surface-elevation skewness and asymmetry 
for several data sets (band-pass filtered between 0.04 and 0.3 Hz) are shown in figure 8. 
Except for the data with double-peaked power spectra (figure 8e),  the nonlinear 
model accurately predicts the overall evolution of both skewness and asymmetry. The 
shallowest data points in figures 8 (c, d ) ,  which are well inside the breaking region and 
may be strongly nonlinear, are not well predicted by the weakly nonlinear, non- 
dissipative model. 

Comparisons between bispectral observations and model predictions for six data 
sets, including broad-band and narrow-band power spectra, with 4 m depth significant 
wave heights ranging from 33 to 92 cm were made. The comparisons shown here are 
a representative sample. 

3.2, Flat-bottom simulations 
Data obtained a t  a different location (Torrey Pines, California), where the beach 
slope = 0.02, have bispectral evolution quite similar to the data discussed above, 
where the beach slope = 0.05. In particular, biphase values for the Torrey Pines data 
approach p = -in, and the absolute value of asymmetry monotonically increases 
from near zero in deep water to about 1 as the waves shoal. A vertical asymmetry 
similar to that observed in the field (figures 3 and 8), but much milder, has been 
theoretically predicted for cnoidal-wave solutions to nonlinear Boussinesq-type 
equations on a sloping bottom (Svendsen & Buhr-Hansen 1978). Shoaling mono- 
chromatic waves in the laboratory also become asymmetrical about a vertical axis, 
with biphases (all the frequencies were harmonics of the primary) approaching 
p = -  $ during shoaling and breaking (Flick, Guza & Inman 1981), similar to the 
field observations of EG. Svendsen & Buhr-Hansen (1978) and Flick et al. (1981) point 
out that in these cases the sloping bottom makes a critical contribution to the 
evolution of wave shape, since on a flat bottom cnoidal and Stokes waves have 
permanent form by definition. In the light of these observations of evolving wave 
shapes, i t  is of interest to compare model results with identical initial conditions, but 
with and without depth variations. 

To investigate the effect of a gently sloping bottom on bispectral evolution, the 
nonlinear model ((3.1)) was numerically integrated for several cases of a shallow and 
constant (2.5 m) depth ( S 3 4 5 ,  table 1). Model set S3 uses 9 m depth measured 
Fourier amplitudes (figure 9) and phases as initial conditions. Model sets 54 and 55 
(discussed again in $3.3) use initial conditions different from S3, see table 1. 

As the wave field (for S3-S5) evolves over the 2.5 m depth flat bottom several 
features strikingly similar to the sloping-bottom cases (observed and simulated) 
appear. The bicoherence spectra for the 2.5 m depth flat-bottom simulations (53 at 
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FIGURE 10. Power spectrum (above) and contoursofbicoherence (below) predicted by the flat-bottom 
spectral nonlinear model at  z = 61 m, with initial conditions 53. Format is the same as figure 1 .  

x = 61 m is shown in figure 10) resemble the field data (SO, figure 1 a )  in 2.7 m depth 
(S5 and S1 are also comparable). The chief discrepancy between 53 and SO involves 
triads with a very high-frequency mode (f > 0.3 Hz), where the flat-bottom integra- 
tions tend to overpredict power-spectral levels (compare power spectra in figures l a 
and 10). This overprediction of spectral levels at  high frequencies by the nonlinear 
model (which is discussed in Elgar & Guza 1985a) led to unrealistic predicted power 
spectra at evolution distances greater than approximately 70 m. The 2.7 m depth field 
data are 255 m shoreward of those at  9 m depth. The difference in evolution distances 
(61 and 255 m) reflects the fact that nonlinear effects are stronger in shallow water. 
The point here is that the flat- and sloping-bottom solutions, with identical initial 
conditions, evolve to structurally similar states. 

As illustrated in figure 11 for 53, all flat-bottomed test cases (S3-S5) show biphase 
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FIGURE 1 1 .  Biphase versus distance for selected frequency pairs as predicted by the flat-bottom 
spectral nonlinear model (S3). Symbols are defined in figure 2. 

evolution toward p = -in, similar to  the field data (figure 2). The absolute value of 
asymmetry monotonically increases from a near-zero value to  about 1 (figure 12), 
similar to the sloping-bottom cases (SO-S2, figures 3, 8, and 13). On the other hand, 
the skewness evolution on the sloping bottom is significant (figures 3 , 8 ,  and 13), but 
on the flat bottom varies only slightly from its initial value. The initial values of 
skewness for S3-S5 (band-pass filtered between f = 0.04 and 0.4 Hz) were 0.20, 
-0.02, and 0.37 respectively, and the corresponding values a t  z = 61 m were 0.16, 
-0.02, and 0.28. 

There is little difference in the asymmetry evolution on flat and sloping bottoms, 
but substantial difference in the skewness evolution. Since the asymmetry is several 
times larger than the skewness, the major bispectral features are not bottom-slope 
dependent, a t  least for the range of slopes considered. This is not unexpected since 
previous model testing (Freilich & Gum 1984) indicated that bottom slope plays only 
a minor role in power-spectral evolution. The sloping bottom appears in (3.1) 
explicitly only as a linear term, and affects the nonlinear terms only implicitly 
through the dependence of the coupling coefficients on the dispersion relationship. 

3.3. Effects of initial phase coupling 
Given that weakly dispersive nonlinear equations support waves of permanent form, 
and that these waves have particular phase relationships between the various Fourier 
modes, it is also conceivable that bispectral evolution could depend on details of the 
phase coupling present in the initial conditions. The S1 model predictions of bispectra 
discussed in $3.1 used measured Fourier phases (which can have significant phase 



Predictions of bispectra of shoaling gravity waves 

1.2 

1.0 

o.8 

k2 
c) 

8 
2 

0.6 

I 

13 

- 

- 

# *  

-qD q 

- 

0.4 

# 
0 

0 
@ 

0 
0 

# 

++ 6 
8. 

# 

1 I I I I I 

60 50 40 30 20 10 0 
Distance (m) 
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coupling, figures 2 and 6) as initial conditions. To see the effects of phase coupling 
in a typical ocean spectrum, these S1 model results (and field data) are compared with 
simulations with identical initial power spectra, but random initial phases (case S2, 
table 1 ) .  Simulations of waves propagating in a constant water depth of 2.5 m, with 
identical initial power spectra but different initial phase coupling, were also performed 
(53 and S4). The 9 m depth measured energy spectrum (figure 9) was used as an initial 
condition for 53 and 54 (table 1).  The harmonic content and amount of phase coupling 
measured in 9 m depth is less than that measured in shallower water. The differences 
between the initial conditions of S1 and 52, and between S3 and 54, are in the amount 
of phase coupling. Model sets 52 and S4 have statistically zero initial skewness and 
asymmetry; set S1 has more coupling than 53. As shown in figure 13,S2 evolves nearly 
as rapidly as S1. Sets S3 and 54 are also comparable (figure 12). It appears that the 
gross trends in the nonlinear evolution of asymmetry and skewness do not depend 
critically on the initial phase coupling, at  least for the initial phases in the present 
data set. 

The insensitivity to bottom slope and initial phase coupling is not inconsistent with 
the assertion (Svendsen & Buhr-Hansen 1978; Flick et al. 1981) that bottom slope 
plays a critical role in the nonlinear evolution of Stokes and cnoidal waves. Measured 
ocean initial conditions (many data sets have been examined) are simply not 
consistent with cnoidal waves. Dispersive and nonlinear terms which cancel in the 
special case of a cnoidal wave do not generally cancel in the ocean, and the bottom 
slope and special phase effects which control the cnoidal-wave evolution are small 
relative to the nonlinear effects which dominate in general. 



14 

1.0 

A 0.8 - 
0.6 

?: 7 0.4 

0.2 

S. Elgar and R.  T .  Gum 

-0 

- 

- 

- 
- 

0.6 

0.5 

0.4 

3 0.3 

cA 0.2 

0.1 

00 
-0.1 

8 
3 

0 

+ 

0 - 
- 
- 
- 

0 
0 

- 

- + 
- + 
' , + ,  + L  

0 

+ 0 

+ 
0 

o c , ,  , , , , + 
1.0 1.5 2.0 2.5 3.0 3.5 4.0 

4. A simplified model 
For the case of unidirectional waves propagating over a flat bottom, the 

Boussinesq equations leading to the nonlinear model (3.1) reduce to the Korteweg-de 
Vries equation 

?It+C(l+&)?Iz+mzz = 0, (4.1) 

where C = (gh):, g is the acceleration due to gravity, y = $h2, and subscripts t and 
x denote differentiation with respect to time and space respectively. Let the sea 
surface be represented as 

~ ( x ,  t )  = EAn(x) exp[-i(knx-wnt)]+A,*(x) exp[i(k,x-writ)], (4.2) 
n 

where the complex Fourier amplitudes An(x) are spatially slowly varying (rather 
than temporally, Bryant 1973), and the linear wavenumber 

k n  = (wn/(gh)') ( 1  + ( h w i / 6 g ) + O ( w i  h/g)') .  

Retaining terms of O(A,), applying the resonance condition (Bryant 1973), and 
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FIQURE 14. Biphase predicted by the simple harmonic-growth model ((4.6)) versus evolution 
distance. lAll = 0.15 m, &.(O)l = 0.015 m (these amplitudes correspond to a wave height of 0.66 m), 
h = 2.5 m, fi = 0.067 Hz, and at 2 = 0, b2 = 1. The different lines correspond to different initial 
biphases. 

considerable algebraic simplification leads to 

where 

-E k, An+, A: exp [ - i(k,+, - k,- k,) x] 
P 

+X k, A, A&, exp [ -i(k,- kp-, - k,) z)], (4.3) 
P 

D =( 1 if p =in, 
t if p=k=?p. 

For the special case of a single primary wavetrain and its first harmonic there are 
analytic solutions to (4.3) in terms of the sine elliptic functions (Mei & Unluata 1972). 
If A, 6 A,, then A, is approximately constant and 

where Q = 3k1/2h, and the mismatch K = k,-2kl = w:(gh)t/g2. 
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FIGURE 15. Skewness and -asymmetry predicted by the simple harmonic-growth model ((4.6)) 
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Equation (4.4) can be rewritten in terms of the Ursell number Ur = (A,  L l ) / ( L l  h)3 : 

(4.5) A J z )  =iUrA,  [exp [i(k,h)2 L, 21 - 11 +A,(O). 

The Ursell number is often used as the scaling parameter for shallow water. However, 
as suggested by (4.5), better scaling might be obtained by modulating the Ursell 
number with a term related to the evolution distance and the shallowness (the 
exponential term in the brackets). For example, consider the limiting cases of waves 
arriving a t  a particular shallow-water location X by ( a )  travelling a long distance over 
a very gently sloping bottom ; and by ( b )  travelling over a very steeply sloping bottom. 
In both cases, the Ursell number a t  X is approximately the same, but clearly case (a)  
has undergone more nonlinear evolution than case ( b ) .  This dependence on evolution 
distance and shallowness is consistent with the flat-bottom simulations of33.2, where 
the evolution distances required to  reach equivalent states reflected the depth. 

The bispectrum of the self-self wave interaction described by (4.4) is, taking 
statistical averages (Kim et al. 1980), 

Q B(w,, w, )  = - 1 ~ ~ 1 4  [e-iKz- 13 +B,,  
K 

where the initial amount of phase coupling (i.e. bicoherence) between the primary 
and its harmonic is simulated by 
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where 0 < b2 < 1. The evolution (4.6) of bispectral quantities for parameters roughly 
corresponding to the field data of figures 1-3 is displayed in figures 14 and 15. 
Figure 14 shows a convergence toward a final biphase value of /3 = -ax, independent 
of the initial biphase. For small Kx (Kx < 0.23 for x < 61 m) the real part of the 
bispectrum (skewness) slowly decreases from its initial value, while the magnitude 
of the imaginary part (asymmetry) increases linearly ((4.6) and figure 15). This 
bispectral behaviour is qualitatively consistent with both the field observations and 
the model results with 205 Fourier modes (compare figure 14 with figures 2, 6, and 
11, and figure 15 with figures 3, 8, 12, and 13). It seems that the simplified model 
embodies much of the physics that lead to the steepening of forward faces, which is 
a precursor of wave breaking. Note that the simplified model ((4.4)-(4.6)) is periodic. 
The numerical results with 205 modes are also suggestive of periodic (recurrence) 
behaviour for long evolution distances. In the many-mode case this periodicity 
appears to be largely an artifact associated with the imposition of a high-frequency 
cutoff which prevents the transfer of energy to even higher frequencies. Thus, the 
relevance of the simplified-model results is probably restricted to small Kx, and only 
small-Kx results are presented here. These results do not imply that recurrence 
phenomena play an important role in the shoaling of naturally occurring waves. 

5. Conclusions 
A nonlinear model (Freilich & Guza 1984) based on the Boussinesq equations for 

waves on a shallow, sloping bottom (Peregrine 1967) accurately predicts the observed 
bispectral evolution of waves shoaling on a beach ($3.1). Model predictions of 
bicoherence, biphase, and sea-surface-elevation skewness and asymmetry match the 
field observations quite well for several different data sets. Numerical simulations of 
waves propagating over a shallow flat bottom (53.2) duplicate many features of the 
bispectral evolution observed in field data with a gently sloping bottom, suggesting 
that important aspects of the evolution of the bispectrum of shoaling surface gravity 
waves are primarily due to the nonlinear dynamics of the wave field. 

Numerical integration of the model with identical energy spectra, but differing 
amounts of nonlinear phase coupling in the initial conditions (§3.3), indicates that 
the patterns of nonlinear evolution (e.g. bicoherence, biphase and asymmetry) of 
typical ocean wave fields are insensitive to the initial phase coupling. With the 
important exception of skewness, it appears that the gross statistical features of 
nonlinear evolution can be modelled without accurate specification of the nonlinear 
effects in intermediate and deep water which determine the details of the phase 
coupling in shallow-water initial conditions. Indeed, the evolution of bicoherence, 
biphase, and asymmetry for all five model sets (table 1) and the field data are 
remarkably similar to each other, and to many other ocean observations. 

M. H. Freilich helped adapt his numerical integration code for the flat-bottom 
simulations. Support was provided by a grant from the Foundation for Ocean 
Research (Steve Elgar) and by the Office of Naval Research, Coastal Sciences Branch, 
under contract number N0014-75-C-0300 (R. T. Guza). The data collection was 
supported by ONR and the Sea Grant Nearshore Sediment Transport Study (project 
number RICA-N-40). 
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